
C# ESSENTIALS

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC ii
 All Rights Reserved

C# Essentials
Rev. 4.8

Student Guide

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of
their respective owners.

™ is a trademark of Object Innovations.

Author: Robert J. Oberg

Special Thanks: Johnathon McAlister

Copyright ©2017 Object Innovations Enterprises, LLC All rights reserved.

Object Innovations
877-558-7246
www.objectinnovations.com

Printed in the United States of America.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC iii
 All Rights Reserved

Table of Contents (Overview)

Chapter 1 .NET: What You Need to Know

Chapter 2 C# Overview for the Sophisticated Programmer

Chapter 3 Object-Oriented Programming in C#

Chapter 4 C# and the .NET Framework

Chapter 5 Delegates and Events

Chapter 6 Introduction to Windows Forms

Chapter 7 Newer Features in C#

Appendix A Using Visual Studio 2017

Appendix B Language Integrated Query (LINQ)

Appendix C Unsafe Code and Pointers in C#

Appendix D Using .NET Framework 4.7

Appendix E Learning Resources

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC iv
 All Rights Reserved

Directory Structure

 The course software installs to the root directory
C:\OIC\CsEss.

 Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and
so on.

 Example programs for Appendices A, B and C are in the
directories AppA, AppB and AppC.

 The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

 The CaseStudy directory contains a case study in multiple
steps.

 The Demos directory is provided for performing in-class
demonstrations led by the instructor.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC v
 All Rights Reserved

Table of Contents (Detailed)

Chapter 1 .NET: What You Need to Know .. 1
Getting Started .. 3
.NET: What Is Really Happening ... 4
.NET Programming in a Nutshell ... 5
.NET Program Example.. 6
Viewing the Assembly.. 7
Viewing Intermediate Language... 8
Understanding .NET ... 9
Visual Studio 2017.. 10
Visual Studio Sign In .. 11
Creating a Console Application .. 12
Adding a C# File... 13
Using the Visual Studio Text Editor... 14
IntelliSense.. 15
Build the Project ... 16
Run the Project.. 17
Pausing the Output.. 18
Visual C# and GUI Programs ... 19
.NET Documentation .. 20
Summary ... 21

Chapter 2 C# Overview for the Sophisticated Programmer................................. 23
Hello, World ... 25
Compiling, Running (Command Line) ... 26
Program Structure ... 27
Namespaces... 30
Variables ... 31
Input in C# .. 32
More about Classes ... 33
InputWrapper Class .. 34
Sample Program.. 35
Input Wrapper Implementation... 36
Compiling Multiple Files.. 37
Control Structures ... 38
switch .. 39
C# Operators ... 40
Precedence Table .. 41
Types in C#... 42
Simple Types .. 43
Types in System Namespace .. 44
Integer Data Types.. 45
Floating Point Data Types .. 46
Implicit Conversions... 47

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC vi
 All Rights Reserved

Explicit Conversions... 48
Boolean Data Type ... 49
struct.. 50
Uninitialized Variables ... 51
Enumeration Types ... 52
Nullable Types .. 53
Reference Types.. 54
Class Types ... 55
object... 56
string ... 57
Copying Strings .. 58
StringBuilder Class ... 59
Classes and Structs.. 61
Static and Instance Methods ... 62
Method Parameters ... 63
No “Freestanding” Functions in C#.. 64
Classes with All Static Methods ... 65
Parameter Passing ... 66
Parameter Terminology .. 67
Value Parameters .. 68
Reference Parameters.. 69
Reference Parameters Example .. 70
Output Parameters... 71
Output Parameters Example ... 72
Structure Parameters ... 73
Class Parameters ... 74
Method Overloading ... 75
Variable Length Parameter Lists .. 77
Arrays.. 78
One-Dimensional Arrays .. 79
System.Array .. 80
Jagged Arrays.. 81
Rectangular Arrays ... 82
foreach for Arrays ... 83
Boxing and Unboxing ... 84
Implicitly Typed Variables ... 85
Implicitly Typed Variables – Example ... 86
Output in C#.. 87
Formatting... 88
Formatting Example.. 89
Exceptions... 90
Exception Example ... 91
Checked Integer Arithmetic.. 92
Throwing New Exceptions ... 93
finally .. 94
System.Exception.. 95

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC vii
 All Rights Reserved

Lab 2 ... 96
Summary ... 97

Chapter 3 Object-Oriented Programming in C# ... 101
C# Object-Oriented Features .. 103
Encapsulation and Accessors.. 104
Asymmetric Accessor Accessibility ... 105
Using a Property ... 106
Indexers... 107
Visual Studio Console Projects... 108
Files in Skeleton Solution ... 109
Source Files... 110
Bank Example... 111
Account Class ... 112
Constructors .. 114
Static Members ... 115
Static in Main .. 116
Static Constructor.. 117
Constant and Readonly Fields .. 118
Auto-Implemented Properties... 119
Auto-Implemented Property Example .. 120
Inheritance in C#... 121
New Version of Base Class... 122
Features of the New Base Class.. 123
Derived Class .. 124
Overriding a Virtual Function... 125
Abstract Classes .. 126
Keyword: abstract .. 127
Derived Class .. 128
Test Program... 129
Sealed Classes... 130
Access Control and Assemblies.. 131
Internal Accessibility .. 132
Assembly Example ... 133
Class Libraries .. 134
Lab 3 ... 135
Summary ... 136

Chapter 4 C# and the .NET Framework .. 141
Components and OO in C# ... 143
Interfaces in C# ... 145
Interface Inheritance ... 146
Programming with Interfaces.. 147
Implementing Interfaces ... 148
Using an Interface ... 150
Example: SmallInterface.. 151
Dynamic Use of Interfaces.. 152
Example: TryInterfaces.. 153

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC viii
 All Rights Reserved

is Operator... 154
as Operator .. 155
Resolving Ambiguity .. 156
Explicit Interface Implementation .. 157
Explicit Interfaces Test Program .. 158
System.Object ... 159
Collections .. 161
ArrayList ... 162
ArrayList Methods .. 163
Example: StringList ... 164
IEnumerable and IEnumerator.. 165
Using Enumerators.. 166
Collections of User-Defined Objects .. 167
Account Class ... 168
AccountList Class ... 170
Copy Semantics in C#... 172
Deep Copy and ICloneable ... 173
Lab 4A .. 174
Writing Generic Code ... 175
Using a Class of object ... 176
Generic Types ... 177
Generic Syntax in C#.. 178
Generic Example... 179
Generic Client Code.. 180
System.Collections.Generic.. 181
Lab 4B... 182
Object Initializers.. 183
Collection Initializers.. 184
Anonymous Types .. 185
Attributes... 186
Attribute Usage Example.. 187
Summary ... 188

Chapter 5 Delegates and Events .. 193
Overview of Delegates and Events ... 195
Callbacks and Delegates ... 196
Usage of Delegates ... 197
Declaring a Delegate... 198
Defining a Method .. 199
Creating a Delegate Object ... 200
Calling a Delegate... 201
Random Number Generation .. 202
A Random Array... 203
Anonymous Methods .. 204
Combining Delegate Objects .. 205
Account.cs... 206
DelegateAccount.cs .. 207

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC ix
 All Rights Reserved

Lambda Expressions ... 208
Named Method.. 209
Anonymous Method.. 210
Lambda Expression Example ... 211
Events.. 212
Events in C# and .NET ... 213
Client Side Event Code... 215
Chat Room Example ... 216
Lab 5 ... 217
Summary ... 218

Chapter 6 Introduction to Windows Forms ... 221
Creating a Windows Forms App... 223
Partial Classes ... 227
Windows Forms Event Handling.. 228
Add Events for a Control .. 229
Events Documentation.. 230
Closing a Form.. 231
ListBox Control .. 232
ListBox Example .. 233
Lab 6 ... 234
Summary ... 235

Chapter 7 Newer Features in C# ... 239
dynamic Type.. 241
Runtime Error Example .. 242
dynamic versus object ... 243
Behavior of object... 244
Behavior of dynamic ... 245
Named Arguments .. 246
Optional Arguments.. 247
Book Class .. 248
Using Optional Arguments ... 249
Variance in Generic Interfaces.. 250
Covariance Example ... 251
Variance with IComparer<T>... 252
Interfaces with Variance Support.. 253
Contravariance Example... 254
Asynchronous Programs in C# 5.0 ... 255
Task and Task<TResult> .. 256
Aysnc Methods ... 257
Async Example ... 258
Synchronous Call .. 259
Async Call... 260
Threading .. 261
New Features in C# 6.0... 262
Null-Conditional Operator .. 263
Composite Format String.. 264

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC x
 All Rights Reserved

Interpolated Strings... 265
New Features in C# 7.0... 266
Tuples.. 267
Summary ... 268

Appendix A Using Visual Studio 2017.. 269
Visual Studio 2017 Community.. 271
Installing Visual Studio 2017.. 272
Individual Components... 274
Lean and Mean Install... 275
Modifying Visual Studio... 276
Visual Studio Sign in .. 277
Sign In Advantages ... 278
Visual Studio Start Page ... 279
A Visual Studio Solution .. 280
Toolbars .. 282
Customizing a Toolbar.. 283
Creating a Console Application .. 286
Adding a C# File... 287
Using the Visual Studio Text Editor... 288
Build and Run the Bytes Project... 289
Running the Bytes Project .. 290
Executable File Location .. 291
Managing Configurations ... 292
Project Configurations .. 293
Creating a New Configuration .. 294
Setting Configuration Build Settings .. 295
Debugging... 296
Breakpoints ... 297
Watch Variables.. 298
Debug Toolbar .. 299
Stepping with the Debugger.. 300
Demo: Stepping with the Debugger... 301
Call Stack and Call Hierarchy... 302
Multiple-Project Solution Demo... 303
Adding a Reference... 304
Project Dependencies.. 305
Startup Project... 306
Hidden Files .. 307
Summary ... 308

Appendix B Language Integrated Query (LINQ)... 309
Language-Integrated Query (LINQ) ... 311
LINQ Example.. 312
Using IEnumerable<T> .. 313
Basic LINQ Query Operators ... 314
Obtaining a Data Source ... 315
LINQ Query Example... 316

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC xi
 All Rights Reserved

Filtering... 317
Ordering .. 318
Aggregation... 319
Obtaining Lists and Arrays ... 320
Deferred Execution ... 321
Summary ... 322

Appendix C Unsafe Code and Pointers in C#.. 323
Unsafe Code.. 325
Unsafe Blocks ... 326
Unsafe Option in Visual Studio .. 328
Pointers ... 329
Swapping Via Pointers.. 331
Fixed Memory... 332
Fixed Memory Illustration .. 333
Summary ... 335

Appendix D Using .NET Framework 4.7 ... 337
.NET Framework Versions ... 339
Targeting .NET Platforms... 340
DirectX Dependency... 341
.NET 4.7 in Visual Studio 2017.. 342
New Features in .NET 4.7... 343
Summary ... 344

Appendix E Learning Resources .. 345

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC xii
 All Rights Reserved

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 1
 All Rights Reserved

Chapter 1

.NET: What You Need to Know

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 2
 All Rights Reserved

.NET: What You Need to Know

Objectives

 After completing this unit you will be able to:

 Describe the essentials of creating and running a
program in the .NET environment.

 Build and run a simple C# program.

 Use the ILDASM tool to view intermediate language.

 Use Visual Studio 2017 as an effective environment
for creating C# programs.

 Use the .NET Framework SDK documentation.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 3
 All Rights Reserved

Getting Started

 From a programmer’s perspective, a beautiful thing
about .NET is that you scarcely need to know
anything about it to start writing programs for the
.NET environment.

 You write a program in a high-level language (such as C#), a
compiler creates an executable .EXE file (called an
assembly), and you run that .EXE file.

 Even very simple programs, if they are designed to do
something interesting, such as perform output, will
require that the program employ the services of
library code.

 A large library, called the .NET Framework Class Library,
comes with .NET, and you can use all of the services of this
library in your programs.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 4
 All Rights Reserved

.NET: What Is Really Happening

 The assembly that is created does not contain
executable code, but, rather, code in Intermediate
Language, or IL (sometimes called Microsoft
Intermediate Language, or MSIL).

 In the Windows environment, this IL code is packaged up in
a standard portable executable (PE) file format, so you will
see the familiar .EXE extension (or, if you are building a
component, the .DLL extension).

 You can view an assembly using the ILDASM tool.

 When you run the .EXE, a special runtime
environment (the Common Language Runtime, or
CLR) is launched and the IL instructions are
executed by the CLR.

 Unlike some runtimes, where the IL would be interpreted
each time it is executed, the CLR comes with a just-in-time
(JIT) compiler, which translates the IL to native machine
code the first time it is encountered.

 On subsequent calls, the code segment runs as native code.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 5
 All Rights Reserved

.NET Programming in a Nutshell

1. Write your program in a high-level .NET language, such as C#.

2. Compile your program into IL.

3. Run your IL program, which will launch the CLR to execute
your IL, using its JIT to translate your program to native code as
it executes.

 We will look at a simple example of a C# program,
and run it under .NET.

 Don’t worry about the syntax of C#, which we will start
discussing in the next chapter.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 6
 All Rights Reserved

.NET Program Example

 See SimpleCalc in the Chap01 folder.

1. Enter the program in a text editor.

// SimpleCalc.cs
//
// This program does a simple calculation:
// calculate area of a rectangle

public class SimpleCalc
{
 static void Main()
 {
 int width = 20;
 int height = 5;
 int area;
 area = width * height;
 System.Console.WriteLine("area = {0}", area);
 }
}

2. Compile the program at the command-line. Start the console

window via Start | All Programs | Visual Studio 2017 | Visual
Studio Tools | Developer Command Prompt for VS2017.
Navigate to folder \OIC\CsEss\Chap01\SimpleCalc.

>csc SimpleCalc.cs

3. Run your IL program SimpleCalc.exe

>SimpleCalc
area = 100

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 7
 All Rights Reserved

Viewing the Assembly

 You can view the assembly using the ILDASM tool1.

>ildasm SimpleCalc.exe

1 You can run ILDASM from the Developer Command Prompt. You can change the font size from the
View menu.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 8
 All Rights Reserved

Viewing Intermediate Language

 Double-click on Main:void()

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 9
 All Rights Reserved

Understanding .NET

 The nice thing about a high-level programming
language is that you usually do not need to be
concerned with the platform on which the program
executes.

 You can work with the abstractions provided by the
language and with functions provided by libraries.

 Your appreciation of the C# programming language
and its potential for creating great applications will
be enhanced as you delve more deeply into the
various .NET technologies.

 The goal in this course is to get you up and running quickly
in the C# language.

 Later in the course we do introduce some features of the
.NET Framework.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 10
 All Rights Reserved

Visual Studio 2017

 While it is possible to write C# programs using any
text editor, and compile them with the command-line
compiler, it is very tedious to program that way.

 An IDE makes the process of writing software much
easier.

 An IDE provides convenience items, such as a syntax-
highlighting editor.

 An IDE reduces the tedium of keeping track of
configurations, environment settings and file organizations.

 You may use Visual Studio 2017 throughout this
course to create and compile your C# programs.

 Visual Studio 2017 is discussed in more detail in
Appendix A.

 In this course you may use any version of VS 2017,
including the free Visual Studio 2017 Community.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 11
 All Rights Reserved

Visual Studio Sign In

 When you first bring up Visual Studio on a new
device, you will be invited to sign in.

 Sign in with any Microsoft ID.

 By doing so you will synchronize your settings among
devices and connect to online developer services.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 12
 All Rights Reserved

Creating a Console Application

 We will now create a simple console application using
Visual Studio.

 Our program is the same simple calculator we created earlier
that was compiled at the command line.

1. From the Visual Studio main menu, choose File | New |
Project.... This will bring up the New Project dialog.

2. Choose Visual C# and Console App (.NET Framework).

3. Leave checked “Create directory for solution”. 2

4. In the Name field, type SimpleCalcVs and for Location browse
to C:\OIC\CsEss\Demos. Click OK.

2 Examples in later chapters may not have a directory for solution.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 13
 All Rights Reserved

Adding a C# File

 There will be a number of starter files. Expand
properties and select the files AssemblyInfo.cs (in the
Properties folder), App.config and Program.cs. Press
the Delete key.

 We are now going to add a file SimpleCalc.cs, which
contains the text of our program.

1. In Solution Explorer, right click over SimpleCalcVs and choose
Add | New Item.... This will bring up the Add New Item dialog.

2. In the middle pane, choose “Code File.” For Name type
SimpleCalc.cs. Click Add.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 14
 All Rights Reserved

Using the Visual Studio Text Editor

 The empty file SimpleCalc.cs will now be open in the
Visual Studio text editor. Enter the following
program.

 Or you could just copy from Chap01\SimpleCalc\.

// SimpleCalc.cs
//
// This program does a simple calculation:
// calculate area of a rectangle

public class SimpleCalc
{
 static void Main()
 {
 int width = 20;
 int height = 5;
 int area;
 area = width * height;
 System.Console.WriteLine("area = {0}", area);
 }
}

 Notice that the Visual Studio text editor highlights syntax,
indents automatically, and so on.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 15
 All Rights Reserved

IntelliSense

 A powerful feature of Visual Studio is IntelliSense.

 IntelliSense will automatically pop up a list box allowing you
to easily insert language elements directly into your code.

 For now, don’t actually add another WriteLine() statement.
We’ll see the effect of the extra statement shortly.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 16
 All Rights Reserved

Build the Project

 Building a project means compiling the individual
source files and linking them together with any
library files to create an IL executable .EXE file.

 To make it easier to build, add the Build toolbar by a
right-click over the toolbar area. Check Build.

 Then you can build the project by using one of the
following:

 Menu Build | Build Solution or toolbar button or
keyboard shortcut Ctrl+Shift+B.

 Menu Build | Build SimpleCalcVs or toolbar button (this
just builds the project SimpleCalcVs)3.

3 The two are the same in this case, because the solution has only one project, but some solutions have
multiple projects, and then there is a difference.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 17
 All Rights Reserved

Run the Project

 You can run the program without the debugger by
using one of the following:

 Menu Debug | Start Without Debugging

 Toolbar button (This button is not provided by default;
see Appendix A for how to add it to your Build toolbar.)

 Keyboard shortcut Ctrl + F5

 You can run the program in the debugger by using
one of the following:

 Menu Debug | Start Debugging

 Toolbar button

 Keyboard shortcut F5.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 18
 All Rights Reserved

Pausing the Output

 If you run the program in the debugger from Visual
Studio, you will notice that the output window
automatically closes on program termination.

 To keep the window open, you may prompt the user
for some input.

public class SimpleCalc
{
 static void Main()
 {
 int width = 20;
 int height = 5;
 int area;
 area = width * height;
 System.Console.WriteLine("area = {0}", area);
 System.Console.WriteLine(
 "Prese Enter to exit");
 System.Console.ReadLine();
 }
}

 This program is saved as a Visual Studio solution in
Chap01\SimpleCalcVs.

 Remember that you can always make the console
window stay open by running without the debugger
via Ctrl + F5.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 19
 All Rights Reserved

Visual C# and GUI Programs

 Microsoft’s implementation of the C# language,
Visual C#, works very effectively in a GUI
environment.

 Using Windows Forms, it is easy to create Windows GUI
programs in C#.

Example: See Chap01\SimpleCalcGui

 We will discuss GUI programming using C# in
Chapter 6.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 20
 All Rights Reserved

.NET Documentation

 .NET Framework documentation is available online.

 It is now part of comprehensive Microsoft
documentation at

https://docs.microsoft.com

 Select .NET.

 You can also get there from Visual Studio.

 Menu Help | View Help.

 You will then have to back out to Docs.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 21
 All Rights Reserved

Summary

 As in other environments, with .NET you write a
program in a high-level language, compile to an
executable (.EXE file), and run that .EXE file.

 The .EXE file, called an assembly, contains
Intermediate Language instructions.

 You can view an assembly through the ILDASM tool.

 Visual Studio 2017 is a powerful IDE that makes it
easy to develop C# programs.

 With Visual Studio it is easy to create GUI programs
using C#.

 You can access extensive .NET Framework
documentation through the Visual Studio help
system.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 1

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 22
 All Rights Reserved

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 23
 All Rights Reserved

Chapter 2

C# Overview for the
Sophisticated Programmer

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 24
 All Rights Reserved

C# Overview for the Sophisticated Programmer

Objectives

 After completing this unit you will be able to:

 Compile and run C# programs in your local
development environment.

 Describe the basic structure of C# programs.

 Describe how related C# classes can be grouped into
namespaces.

 Describe objects and classes in C#.

 Perform input and output in C#.

 Outline the principle control structures and operators
in C#.

 Outline the principle data types in C#.

 Describe the difference between value and reference
types, and explain how C# achieves a unified type
system through “boxing” and “unboxing.”

 Describe parameter passing in C#.

 Use structures, strings and arrays.

 Perform formatting in C#.

 Use exceptions in C#.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 25
 All Rights Reserved

Hello, World

 Whenever learning a new programming language, a
good first step is to write and run a simple program
that will display a single line of text.

 Such a program demonstrates the basic structure of the
language, including output.

 You must learn the pragmatics of compiling and running the
program.

 Here is “Hello, World” in C#:

 See Hello\Hello.cs in the Chap02 directory.

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 System.Console.WriteLine("Hello, World");
 return 0;
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 26
 All Rights Reserved

Compiling, Running (Command Line)

 The Visual Studio 2017 IDE (integrated development
environment) was introduced in Chapter 1, and we
will use it throughout the course.

 See Appendix A for more details.

 To open an existing project or solution, use the menu File |
Open | Project/Solution. You can then navigate to a .csproj
or .sln file.

 If you are using the .NET SDK, you may do the
following:

 Compile the program via the command line:

csc Hello.cs

 An executable file Hello.exe will be generated. To execute
your program, type at the command line:

Hello

 The program will now execute, and you should see the
greeting displayed. That’s all there is to it!

Hello, World

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 27
 All Rights Reserved

Program Structure

// Hello.cs

class Hello
{
 ...
}

 Every C# program has at least one class.

 A class is the foundation of C#’s support of object-oriented
programming.

 A class encapsulates data (represented by variables) and
behavior (represented by methods).

 All of the code defining the class (its variables and methods)
will be contained between the curly braces.

 We will discuss classes in detail later.

 Note the comment at the beginning of the program.

 A line beginning with a double slash is present only for
documentation purposes and is ignored by the compiler.

 C# files have the extension .cs.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 28
 All Rights Reserved

Program Structure (Cont’d)

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 ...
 return 0;
 }
}

 There is a distinguished class which has a method
whose name must be Main.

 The method should be public and static.

 An int exit code can be returned to the operating system. Use
void if you do not return an exit code.

public static void Main(string[] args)

 Command line arguments are passed as an array of strings.

 The argument list can be empty:

public static void Main()

 The runtime will call this Main method—it is the entry point
for the program.

 All of the code for the Main method will be between the
curly braces.

 Note that in C#, it is not necessary for the file name to be the
same as the name of the class containing the Main method.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 29
 All Rights Reserved

Program Structure (Cont’d)

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 System.Console.WriteLine("Hello, World");
 return 0;
 }
}

 Every method in C# has one or more statements.

 A statement is terminated by a semicolon.

 A statement may be spread out over several lines.

 The Console class provides support for standard
output and standard input.

 The method WriteLine() displays a string, followed by a
new line.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 30
 All Rights Reserved

Namespaces

 Much standard functionality in C# is provided
through many classes in the .NET Framework.

 Related classes are grouped into namespaces.

 The fully qualified name of a class is specified by the
namespace, followed by a dot, followed by class name.

System.Console

 A using statement allows a class to be referred to by
its class name alone.

 See Hello2\Hello2.cs.

// Hello2.cs

using System;

class Hello
{
 public static int Main(string[] args)
 {
 Console.WriteLine("Hello, World");
 return 0;
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 31
 All Rights Reserved

Variables

 In C#, you can define variables to hold data.

 Variables represent storage locations in memory.

 In C#, variables are of a specific data type.

 Some common types are int for integers and double for
floating point numbers.

 You must declare variables before you can use them.

 A variable declaration reserves memory space for the
variable and may optionally specify an initial value.

int fahr = 86; // reserves space and assigns
 // an intial value
int celsius; // reserves space but does

// not initialize

 If an initial value is not specified, C# initializes the variable
to a default value, such as 0.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 32
 All Rights Reserved

Input in C#

 A useful program in C# will typically perform some
input.

 An easy, uniform way to obtain input for various
data types is to read the data in as a string and then
convert it to the desired data type.

 Use ReadLine() method of System.Console class to read in
a string.

 Use ToXxxx() methods of System.Convert class to convert
the data.

Console.WriteLine("How many temperatures? ");
string buf = Console.ReadLine();
int numTemp = Convert.ToInt32(buf);

 Because this pattern of prompting for input and
reading it is common in our console programs, we
provide a simple InputWrapper class to shorten our
code.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 33
 All Rights Reserved

More about Classes

 Although we will discuss classes in more detail later,
there is a little more you need to know now.

 A class can be thought of as a template for creating
objects.

 An object is an instance of a class.

 A class specifies data and behavior.

 The data is different for each object instance.

 In C#, you instantiate a class by using the new
keyword.

InputWrapper iw = new InputWrapper();

 This code creates the object instance iw of the
InputWrapper class.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 34
 All Rights Reserved

InputWrapper Class

 The InputWrapper class “wraps” interactive input for
several basic data types.

 The supported data types are int, double, decimal, and
string.

 Methods getInt, getDouble, getDecimal, and getString are
provided.

 A prompt string is passed as an input parameter.

 See the file InputWrapper.cs in directory InputWrapper,
which implements the class, and TestInputWrapper.cs,
which tests the class.

 You do not need to be familiar with the
implementation of InputWrapper in order to use it.

 That is the beauty of “encapsulation”— complex
functionality can be hidden by an easy-to-use interface.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 35
 All Rights Reserved

Sample Program

 This program will convert from Fahrenheit to
Celsius.

 See Convert:

// Convert.cs
//
using System;

class ConvertTemp
{
 public static void Main(string[] args)
 {
 // Input is done directly
 Console.Write("Temperature in Fahrenheit: ");
 string buf = Console.ReadLine();
 int fahr = Convert.ToInt32(buf);

 int celsius = (fahr - 32) * 5 / 9;
 Console.WriteLine("fahrenheit = {0}", fahr);
 Console.WriteLine("celsius = {0}", celsius);

 // Use the InputWrapper class
 InputWrapper iw = new InputWrapper();
 fahr = iw.getInt(
 "Temperature in Fahrenheit: ");

 celsius = (fahr - 32) * 5 / 9;
 Console.WriteLine("fahrenheit = {0}", fahr);
 Console.WriteLine("celsius = {0}", celsius);
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 36
 All Rights Reserved

Input Wrapper Implementation

// InputWrapper.cs
//
// Class to wrap simple stream input
// Datatypes supported:
// int
// double
// decimal
// string
using System;

class InputWrapper
{
 public int getInt(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return Convert.ToInt32(buf);
 }
 public double getDouble(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return Convert.ToDouble(buf);
 }
 public decimal getDecimal(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return Convert.ToDecimal(buf);
 }
 public string getString(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return buf;
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 37
 All Rights Reserved

Compiling Multiple Files

 It is easy to compile multiple files at the command
line.

csc /out:Convert.exe *.cs

 This will compile all of the files in the current directory.

 The /out option specifies the name of the .EXE file.

Directory of C:\OIC\CsEss\Chap02\Convert

05/15/2017 10:59 AM <DIR> .
05/15/2017 10:59 AM <DIR> ..
11/13/2009 01:38 PM 144 app.config
07/19/2001 08:33 PM 909 Convert.cs
11/13/2009 01:38 PM 5,330 Convert.csproj
05/15/2017 10:59 AM 4,608 Convert.exe
11/13/2009 01:10 PM 898 Convert.sln
11/13/2009 01:38 PM 11,264 Convert.suo
05/17/2001 10:23 AM 747 InputWrapper.cs
 7 File(s) 23,900 bytes
 2 Dir(s) 141,012,099,072 bytes free

 If multiple classes contain a Main method, you can use the
/main command line option to specify which class contains
the Main method that you want to use as the entry point into
the program.

csc /out:Convert.exe *.cs /main:ConvertTemp

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 38
 All Rights Reserved

Control Structures

 C# has the familiar control structures of the C family
of languages:

 if

 while

 do

 for

 switch

 break

 continue

 return

 goto

 Except for switch, which is less error-prone in C#,
these controls all have standard semantics.

 There is also a foreach statement, which we will
discuss later in connection with arrays and
collections.

 The throw statement is used with exceptions.

 The lock statement can be used to enforce
synchronization in multi-threading situations.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 39
 All Rights Reserved

switch

 In C#, after a particular case statement is executed,
control does not automatically continue to the next
statement.

 You must explicitly specify the next statement, typically with
a break or goto label.

switch (code)
{
 case 1:
 goto case 2;
 case 2:
 Console.WriteLine("Low");
 break;
 case 3:
 Console.WriteLine("Medium");
 break;
 case 4:
 Console.WriteLine("High");
 break;
 default:
 Console.WriteLine("Special case");
 break;
}

 You may also switch on a string data type.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 40
 All Rights Reserved

C# Operators

 The C# operators are similar to those in C and C++,
with similar precedence and associativity rules.

 There are three kinds of operators.

 Unary operators take one operand and use prefix notation
(e.g. – a) or postfix notation (e.g. a++).

 Binary operators take two operands and use infix notation
(e.g. a + b).

 The one ternary operator ? : takes three operands and uses
infix notation (e.g. expr ? x : y).

 Operators are applied in the precedence order shown
on the next page.

 For operators of the same precedence, order is
determined by associativity.

 The assignment operator is right-associative (operations are
performed from right to left).

 All other binary operators are left-associative (operations are
performed from left to right).

 Precedence and associativity can be controlled by
parentheses. The parentheses indicate which
operation is performed first, shown as the primary
operator (x) in the precedence table.

 C# has operators checked and unchecked, which will
be discussed later.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 41
 All Rights Reserved

Precedence Table

 Precedence goes from the top (highest) to bottom
(lowest).

Category Operators

Primary (x) x.y f(x) a[x] x++ x--

new typeof sizeof checked
unchecked

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional &&

Conditional OR ||

Conditional ?:

Assignment = *= /= += -= <<= >>= &=
 ^= |=

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 42
 All Rights Reserved

Types in C#

 There are three kinds of types:

 Value types

 Reference types

 Pointer types

 Value types directly contain their data.

 Each variable of a value type has its own copy of the data.

 Value types are typically allocated on the stack and get
automatically destroyed when the variable goes out of scope.

 Reference types do not contain data directly, but only
refer to data.

 Variables of reference types store references to data, called
objects.

 Two different variables can reference the same data.

 Reference types are typically allocated on the heap and
eventually get destroyed through a process known as garbage
collection1.

 Pointer types are only used in unsafe code.

 Appendix C discusses pointers and unsafe code.

1 For a discussion of garbage collection, including a programming example, see Chapter 6 of Object
Innovations’ course .NET Framework Using C#.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 43
 All Rights Reserved

Simple Types

 The simple data types are general-purpose, value
data types, including numeric, character, and
boolean.

 The sbyte data type is an 8-bit signed integer.

 The byte data type is an 8-bit unsigned integer.

 The short data type is a 16-bit signed integer.

 The ushort 16-bit unsigned integer.

 The int data type is a 32-bit signed integer.

 The uint 32-bit unsigned integer.

 The long data type is a 64-bit signed integer.

 The ulong 64-bit unsigned integer.

 The char data type is a Unicode character (16 bits).

 The float data type is a single-precision floating point.

 The double data type is a double-precision floating point.

 The bool data type is a Boolean (true or false).

 The decimal data type is a decimal type with 28 significant
digits (typically used for financial purposes).

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 44
 All Rights Reserved

Types in System Namespace

 There is an exact correspondence between the simple
C# types and types in the System namespace.

 C# reserved words are simply aliases for the corresponding
type in the System namespace.

C# Reserved Word Type in System Namespace

sybte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 45
 All Rights Reserved

Integer Data Types

 C# defines the following 9 integral data types:

 The sbyte type is a signed 8-bit integer with the range of
–128 to 127, inclusive.

 The short type is a signed 16-bit integer with the range of
–32768 to 32767, inclusive.

 The int type is a signed 32-bit integer with the range of
–2147483648 to 2147483647, inclusive.

 The long type is a signed 64-bit integer with the range of
–9223372036854775808 to 9223372036854775807,
inclusive.

 The byte type is an unsigned 8-bit integer with the range of 0
to 255, inclusive.

 The ushort type is an unsigned 16-bit integer with the range
of 0 to 65535, inclusive.

 The uint type is an unsigned 32-bit integer with the range of
0 to 4294967295, inclusive.

 The ulong type is an unsigned 64-bit integer with the range
of 0 to 18446744073709551615, inclusive.

 The char type is an unsigned 16-bit integer with the range of
0 to 65535, inclusive. This set of values represents the
Unicode character set.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 46
 All Rights Reserved

Floating Point Data Types

 C# supports the following pre-defined floating point
data types.

 The float data type is a single-precision floating point.

 The double data type is a double-precision floating point.

 The float data type is represented in the IEEE 754
32-bit single-precision floating point format.

 The double data type is represented in the IEEE 754
64-bit double-precision floating point format.

 IEEE 754 define the following special floating point
values:

 Positive zero results from dividing 0.0 by a non-zero positive
value.

 Negative zero results from dividing 0.0 by a non-zero
negative value.

 Positive infinity results from dividing a non-zero positive
value by 0.0.

 Negative infinity results from dividing a non-zero negative
value by 0.0.

 Not-a-Number (also known as NaN) results from dividing
0.0 by 0.0.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 47
 All Rights Reserved

Implicit Conversions

 Implicit conversions are provided by the compiler
automatically where they are required.

 Implicit conversions are guaranteed to be safe, in that
no loss of information can occur.

 For example, the conversions from int to long, or
from float to double, are implicit conversions, which
are inherently safe.

 This is because all values that can be represented by an int
can be precisely represented by a long, and all values that can
be represented by a float can be precisely represented by a
double.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 48
 All Rights Reserved

Explicit Conversions

 Explicit conversions are performed only where the
programmer uses a cast expression explicitly.

 Explicit conversions are risky, in that loss of
information can easily occur.

 Special care may need to be taken when explicitly
casting an expression.

 For example, the conversions from long to int, or from
double to float, are explicit conversions, which are
inherently risky.

 This is because not all values that can be represented by a
long can be precisely represented by an int, and not all
values that can be represented by a double can be precisely
represented by a float.

 An explicit conversion can also be used to force the
compiler to perform the desired type of arithmetic
operation (e.g. floating point division).

 // Cast one of the integers to double and use
 // a double variable for celsius

 double dblCel = (fahr - (double) 32) * 5 / 9;

 If an expression attempts to use an unsafe conversion,
and the programmer has not provided an explicit cast
to perform the conversion, then a compiler error will
be generated.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 49
 All Rights Reserved

Boolean Data Type

 The bool data type represents a Boolean value.

 Boolean values are also known as logical values and may
only be set to the values true or false.

 No predefined conversions exist between bool and
other types.

 In C and C++, there are implicit conversions.

 An integer value of 0 or pointer value of null converts to
false.

 A non-zero or non-null value converts to true.

 In C#, you have to explicitly use relational operators.

if (numTemp == 0)
 ...

if (objRef != null)
 ...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 50
 All Rights Reserved

struct

 A struct is a value type which can group
inhomogeneous types together.

 It can also have constructors and methods, which we will
look at later.

public struct Hotel
{
 public string city;
 public string name;
 public int rooms;
 public decimal cost;
}

 A struct object is created using the new operator.

Hotel hotel = new Hotel();

 A struct object can also be created without new, but
then the fields will be unassigned, and the object
cannot be used until the fields have been initialized.

Hotel hotel;
hotel.name = "Sheraton";
// Now it is OK to use hotel.name field
hotel.city = "Atlanta";
hotel.rooms = 100;
hotel.cost = 50.00m;
// Now it is OK to use hotel object

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 51
 All Rights Reserved

Uninitialized Variables

 The C# compiler will detect attempts to use
uninitialized variables.

 A struct object cannot be used until its fields have been
assigned.

 A simple variable must be initialized before it can be used.

int x;
Console.WriteLine("x = " + x); // error

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 52
 All Rights Reserved

Enumeration Types

 Finally, an enumeration type is a distinct value type
with named constants.

 An enumeration type is a distinct type with named
constants.

 Every enumeration type has an underlying type,
which is one of:

 byte

 short

 int

 long

 An enumeration type is defined through an enum
declaration.

public enum BookingStatus : byte
{
 HotelNotFound, // 0 implicitly
 RoomsNotAvailable, // 1 implicitly
 Ok = 5 // explicit value
}

 If the type is not specified, int is used.

 By default, the first enum member is assigned the value 0,
the second member 1, etc.

 Constant values can be explicitly assigned.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 53
 All Rights Reserved

Nullable Types

 Sometimes it is convenient to allow a special null
value for a variable, as well as the range of values
allowed by the underlying type.

 A good example is in databases, where a null value is
typically used to represent missing data.

 You can declare a variable to be nullable by placing a
question mark after the data type.

int? number;

 This is equivalent to using System.Nullable.

System.Nullable<int> number;

 You can then test whether the variable has this
special null value by using the property HasValue.

 See the example program Nullable.

public static void Main()
{
 int? number = null;
 ShowNumber(number);
 number = 37;
 ShowNumber(number);
}
private static void ShowNumber(int? number)
{
 if (number.HasValue)
 Console.WriteLine(number);
 else
 Console.WriteLine("UNDEFINED");
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 54
 All Rights Reserved

Reference Types

 A variable of a reference type does not directly
contain its data, but instead provides a reference to
the data stored elsewhere (on the heap).

 In C#, there are the following kinds of reference
types:

 Class

 Array

 Interface

 Delegate

 Reference types have a special value, null, which
indicates the absence of an instance.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 55
 All Rights Reserved

Class Types

 A class type defines a data structure that has data
members, function members, and nested types.

 Class types support inheritance.

 Through inheritance, a derived class can extend or specialize
a base class.

 We will discuss inheritance and other details about classes in
the next chapter.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 56
 All Rights Reserved

object

 The object class type is the ultimate base type for all
types in C#.

 Every C# type derives directly or indirectly from object.

 The object keyword in C# is an alias for the
predefined System.Object class.

 System.Object has methods such as ToString(),
Equals() and Finalize(), which we will study later.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 57
 All Rights Reserved

string

 The string class encapsulates a Unicode character
string.

 The string keyword is an alias for the pre-defined
System.String class.

 The string type is a sealed class.

 A sealed class is one that cannot be used as the base class for
any other classes.

 The string class inherits directly from the root object
class.

 String literals are defined using double quotes.

 There are useful built-in methods for string.

 For now, note that the Equals() method can be used to test
for equality of strings.

string a = "hello";
if (a.Equals("hello"))
 Console.WriteLine("equal");
else
 Console.WriteLine("not equal");

 There are also overloaded operators:

if (a == "hello")
 ...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 58
 All Rights Reserved

Copying Strings

 Recall that C# has value types and reference types.

 A value type contains all of its own data.

 A reference type refers to data stored somewhere else.

 As a class, string is a reference type.

 If a reference variable gets copied to another
reference variable, both will refer to the same object.

 If the object referenced by the second variable is
changed, the first variable will also reflect the new
value.

string s1 = "hello";
string s2 = s1; // s2 also refers to "hello"

 To provide more predictable program behavior,
strings in C# are immutable.

 Once assigned a value, the object a string refers to cannot be
changed.

 What you may think of as changing the value of a string is
really giving a new reference.

string s = "bat";
s = s + "man"; // a new object is created and
 // s is assigned to refer to this
 // new object

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 59
 All Rights Reserved

StringBuilder Class

 As we have just discussed, instances of the string class
are immutable.

 As a result, when you manipulate instances of string, you are
frequently obtaining new string instances.

 Depending on your applications, creating all of these
instances may be expensive.

 The .NET library provides a special class, StringBuilder
(located in the System.Text namespace), in which you may
directly manipulate the underlying string without creating a
new instance.

 When you are done, you can create a string instance out of
an instance of StringBuilder by using the ToString()
method.

 A StringBuilder instance has a capacity and a
maximum capacity.

 These capacities can be specified in a constructor when the
instance is created.

 By default, an empty StringBuilder instance starts out with
a capacity of 16.

 As the stored string expands, the capacity will be increased
automatically.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 60
 All Rights Reserved

StringBuilderDemo

 The program StringBuilderDemo provides a simple
demonstration of using the StringBuilder class.

 It shows the starting capacity and the capacity after strings
are appended. At the end, a string is returned.

// StringBuilderDemo.cs

using System;
using System.Text;

public class StringBuilderDemo
{
 public static void Main(string[] args)
 {
 StringBuilder build = new StringBuilder();
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append(
 "This is the first sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append(
 "This is the second sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append("This is the last sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 string str = build.ToString();
 Console.Write(str);
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 61
 All Rights Reserved

Classes and Structs

 While in C++ the concept of class and struct is very
close, there is more of a fundamental difference
between them in C#.

 In C++, a class has default visibility of private and a struct
has default visibility of public, and that is the only difference.

 In C#, the key difference between a class and a struct
is that a class is a reference type and a struct is a
value type.

 A class must be instantiated explicitly, using new.

 The new instance is created on the heap, and memory is
managed by the system through a garbage collection process.

 A struct instance may simply be declared, or you may
use new.

 For a struct, the new instance is created on the stack, and the
instance will be deallocated when it goes out of scope.

 There are different semantics for assignment,
whether done explicitly or via call-by-value
mechanism in a method call.

 For a class, you will get a second object reference and both
object references refer to the same data.

 For a struct, you will get a completely independent copy of
the data in the struct.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 62
 All Rights Reserved

Static and Instance Methods

 We have seen that classes can have different kinds of
members, including fields, constants, and methods.

 A method implements behavior that can be performed by an
object or a class.

 Ordinary methods, sometimes called instance methods, are
invoked through an object instance.

Account acc = new Account();
acc.Deposit(25);

 Static methods are invoked through a class and do not depend
upon the existence of any instances.

int sum = SimpleMath.Add(5, 7);

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 63
 All Rights Reserved

Method Parameters

 Methods have a list of parameters, which may be
empty.

 Methods either return a value or have a void return.

 Multiple methods may have the same name, so long as they
have different signatures (a feature known as method
overloading).

 Methods have the same signature if they have the same
number of parameters and these parameters have the same
types and modifiers (such as ref or out).

 The return type does not contribute to defining the
signature of a method. By default, parameters are
value parameters, meaning copies are made of the
parameters.

 The keyword ref designates a reference parameter, in which
case, the parameter inside the method and the corresponding
actual argument refer to the same object.

 The keyword out refers to an output parameter, which is the
same as a reference parameter, except that on the calling side,
the parameter need not be assigned prior to the call.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 64
 All Rights Reserved

No “Freestanding” Functions in C#

 In C#, all functions are methods and, therefore,
associated with a class.

 There is no such thing as a freestanding function, as in C and
C++.

 “All functions are methods” is rather similar to “everything is
an object” and reflects the fact that C# is a pure object-
oriented language.

 The advantage of all functions being methods is that classes
become a natural organizing principle. Methods are nicely
grouped together.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 65
 All Rights Reserved

Classes with All Static Methods

 Sometimes part of the functionality of your system
may not be tied to any data, but may be purely
functional in nature.

 In C#, you would organize such functions into classes
that have all static methods and no fields.

 The program TestSimpleMath provides an elementary
example.

// SimpleMath.cs

public class SimpleMath
{
 public static int Add(int x, int y)
 {
 return x + y;
 }
 public static int Multiply(int x, int y)
 {
 return x * y;
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 66
 All Rights Reserved

Parameter Passing

 Programming languages have different mechanisms
for passing parameters.

 In the C family of languages, the standard is “call-by-
value.”

 This means that the actual data values themselves are passed
to the method.

 Typically, these values are pushed onto the stack and the
called function obtains its own independent copy of the
values.

 Any changes made to these values will not be propagated
back to the calling program. C# provides this mechanism of
parameter passing as the default, but C# also supports
reference parameters and output parameters.

 In this section, we will examine all three of these
mechanisms, and we will look at the ramifications of passing
class and struct data types.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 67
 All Rights Reserved

Parameter Terminology

 Storage is allocated on the stack for method
parameters.

 This storage area is known as the activation record.

 It is popped when the method is no longer active.

 The formal parameters of a method are the parameters as
seen within the method.

 They are provided storage in the activation record.

 The arguments of a method are the expressions between
commas in the parameter list of the method call.

int sum = SimpleMath.Add(5, 7);
 // arguments are
 // 5 and 7
...

public static int Add(int x, int y)
{ // formal parameters are
 // x and y
 ...
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 68
 All Rights Reserved

Value Parameters

 Parameter passing is the process of initializing the
storage of the formal parameters by the actual
parameters.

 The default method of parameter passing in C# is
call-by-value, in which the values of the actual
parameters are copied into the storage of the formal
parameters.

 Call-by-value is safe, because the method never directly
accesses the actual parameters, only its own local copies.

 But there are drawbacks to call-by-value:

 There is no direct way to modify the value of an argument.
You may use the return type of the method, but that only
allows you to pass one value back to the calling program.

 There is overhead in copying a large object.

 The overhead in copying a large object is borne when
you pass a struct instance.

 If you pass a class instance, or an instance of any other
reference type, you are passing only a reference and not the
actual data itself.

 This may sound like call-by-reference, but what you are
actually doing is passing a reference by value.

 Later in this section, we will discuss the ramifications of
passing struct and class instances.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 69
 All Rights Reserved

Reference Parameters

 Consider a situation in which you want to pass more
than one value back to the calling program.

 C# provides a clean solution through reference
parameters.

 You declare a reference parameter with the ref keyword,
which is placed before both the formal parameter and the
actual parameter.

 A reference parameter does not result in any copying of a
value.

 Instead, the formal parameter and the actual parameter refer
to the same storage location.

 Thus, changing the formal parameter will result in the actual
parameter changing, as both are referring to exactly the same
storage location.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 70
 All Rights Reserved

Reference Parameters Example

 The program RefOutMath illustrates using ref
parameters.

 A single method Calculate passes back two values as
reference parameters.

static void Main(string[] args)
{
// ref keyword is used in front of the arguments
// Variables must be initialized before used as
// ref arguments
 int sum = 0, product = 0;
 Calculate(5, 7, ref sum, ref product);
 Console.WriteLine("sum = {0}", sum);
 Console.WriteLine("product = {0}", product);
 ...

static void Calculate(int x, int y, ref int sum,
ref int prod)
{
 sum = x + y;
 prod = x * y;
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 71
 All Rights Reserved

Output Parameters

 A reference parameter is used for two-way
communication between the calling program and the
called program, both passing data in and getting data
out.

 Thus, reference parameters must be initialized before
use.

 In the previous example, we are only obtaining output, so
initializing the variables only to assign new values is rather
pointless.

 C# provides for this case with output parameters.

 Use the keyword out wherever you would use the keyword
ref.

 Then you do not have to initialize the variable before use.

 Naturally, you could not use an out parameter inside the
method; you can only assign it.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 72
 All Rights Reserved

Output Parameters Example

 The program RefOutMath also illustrates using out
parameters.

 A second method Calculate2 passes back two values as
output parameters.

static void Main(string[] args)
{
 ...
// out keyword is used in front of the arguments
// Variables need not be initialized before used as
// out arguments
 int sum2, product2;
 Calculate2(15, 7, out sum2, out product2);
 Console.WriteLine("sum = {0}", sum2);
 Console.WriteLine("product = {0}", product2);
...

// You cannot define overloaded methods that differ
// only on ref and out
static void Calculate2(int x, int y, out int sum,
out int prod)
{
 sum = x + y;
 prod = x * y;
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 73
 All Rights Reserved

Structure Parameters

 A struct is a value type, so that if you pass a struct as
a value parameter, the struct instance in the called
method will be an independent copy of the struct in
the calling method.

 The program HotelStruct illustrates passing an
instance of a Hotel struct by value.

 The object hotel in the RaisePrice() method is an
independent copy of the object ritz in the Main()
method.

 This figure shows the values in both structures after the price
has been raised for hotel.

 Thus, the change in price does not propagate back to Main().

ritz Boston
Ritz
100

$200.00

Boston
Ritz
100

$250.00

Main

RaisePrice hotel

 The program HotelStructRef has the same struct definition,
but the test program passes the Hotel instance by reference.

 Now the change does propagate, as you would expect.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 74
 All Rights Reserved

Class Parameters

 A class is a reference type, so that if you pass a class
instance as a value parameter, the class instance in
the called method will refer to the same object as the
reference in the calling method.

 The program HotelClass illustrates passing an
instance of a Hotel class by value.

 This figure illustrates how the hotel reference in the
RaisePrice() method refers to the same object as the ritz
reference in Main().

ritz Boston
Ritz
100

$250.00

Main

RaisePrice hotel

 Thus, when you change the price in the RaisePrice() method,
the object in Main() is the same object and shows the new
price.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 75
 All Rights Reserved

Method Overloading

 In a traditional programming language, such as C,
you need to create unique names for all of your
methods.

 If methods basically do the same thing, but only
apply to different data types, it becomes tedious to
create unique names.

 For example, suppose you have a FindMax() method that
can find the maximum of two int, two long, or two string.

 If we need to come up with a unique name for each method,
we would have to create method names, such as
FindMaxInt(), FindMaxLong(), and FindMaxString().

 In C#, as in other object-oriented languages such as
C++ and Java, you may overload method names.

 That is, different methods can have the same name, if they
have different signatures.

 Two methods have the same signature if they have the same
number of parameters, the parameters have the same data
types, and the parameters have the same modifiers (none, ref,
or out).

 The return type does not contribute to defining the signature
of a method.

 So, in order to have two functions with the same name, there
must be a difference in the number and/or types and/or
modifiers of the parameters.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 76
 All Rights Reserved

Method Overloading (Cont’d)

 At runtime, the compiler will resolve a given
invocation of the method by trying to match up the
actual parameters with formal parameters.

 A match occurs if the parameters match exactly or if they can
match through an implicit conversion.

 For the exact matching rules, consult the C# Language
Specification.

 The program OverloadDemo illustrates method
overloading.

 The method FindMax() is overloaded to take either long or
string parameters.

 The method is invoked three times, for int, long, and string
parameters.

 There is an exact match for the case of long and string.

 The call with int actual parameters can resolve to the long
version, because there is an implicit conversion of int into
long.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 77
 All Rights Reserved

Variable Length Parameter Lists

 Our FindMax() methods in the previous section were
very specific with respect to the number of
parameters—there were always exactly two
parameters.

 Sometimes you may want to be able to work with a
variable number of parameters, for example, to find
the maximum of two, three, four, or more numbers.

 C# provides the params keyword, which you can use
to indicate that an array of parameters is provided.

 Sometimes you may want to provide both a general version
of your method that takes a variable number of parameters
and also one or more special versions that take an exact
number of parameters.

 The special version will be called in preference, if there is an
exact match. The special versions are more efficient.

 The program VariableMax illustrates a general
FindMax() method that takes a variable number of
parameters.

 There is also a special version that takes two parameters.

 Each method prints out a line identifying itself, so you can
see which method takes precedence.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 78
 All Rights Reserved

Arrays

 An array is a collection of elements with the following
characteristics:

 All array elements must be of the same type. The element
type of an array can be any type, including an array type. An
array of arrays is often referred to as a jagged array.

 An array may have one or more dimensions. For example, a
two-dimensional array can be visualized as a table of values.
The number of dimensions is known as the array’s rank.

 Array elements are accessed using one or more computed
integer values, each of which is known as an index. A one-
dimensional array has one index.

 In C#, an array index starts at 0, as in other C family
languages.

 The elements of an array are created when the array object is
created. The elements are automatically destroyed when there
are no longer any references to the array object.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 79
 All Rights Reserved

One-Dimensional Arrays

 An array is declared using square brackets [] after
the type, not after the variable.

int [] a; // declares an array of int

 Note that the size of the array is not part of its type.

 The variable declared is a reference to the array.

 You create the array elements and establish the size
of the array using the new operator.

a = new int[10]; // creates 10 array elements

 The new array elements start out with the appropriate default
values for the type (0 for int).

 You may both declare and initialize array elements
using curly brackets, as in C/C++.

int [] a = {2, 3, 5, 7, 11};

 You can indicate you are done with the array
elements by assigning the array reference to null.

a = null;

 The garbage collector is now free to deallocate the elements.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 80
 All Rights Reserved

System.Array

 Arrays are objects.

 System.Array is the abstract base class for all array types.

 Accordingly, you can use the properties and methods
of System.Array for any array.

Array.Sort(a); // sorts the array
for (int i = 0; i < a.Length; i++)
 Console.Write("{0} ", a[i]);
Console.WriteLine();

 For a sample array program, see ArrayDemo.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 81
 All Rights Reserved

Jagged Arrays

 You can declare an array of arrays, or a “jagged”
array.

 Each row can have a different number of elements.

int [][] binomial;

 You then create the array of rows, specifying how
many rows there are (each row is itself an array):

binomial = new int [rows][];

 Next you create the individual rows:

binomial[i] = new int [i+1];

 Finally, you can assign individual array elements:

binomial[0][0] = 1;

 The example program creates and prints Pascal’s
triangle.

 See Pascal.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

 Higher-dimensional jagged arrays can be created
following the same principles.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 82
 All Rights Reserved

Rectangular Arrays

 C# also permits you to define rectangular arrays.

 All rows have the same number of elements.

 First you declare the array:

int [,] MultTable;

 Then you create all of the array elements, specifying
the number of rows and columns:

MultTable = new int[rows, columns];

 Finally, you can assign individual array elements:

MultTable[i,j] = i * j;

 The RectangularArray program creates and prints out
a multiplication table.

 0 0 0 0 0
 0 1 2 3 4
 0 2 4 6 8
 0 3 6 9 12
 0 4 8 12 16

 Higher dimensional rectangular arrays can be
created following the same principles.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 83
 All Rights Reserved

foreach for Arrays

 C# provides a foreach loop that can be used to iterate
through the elements of an array.

 The sample code used nested foreach loops to print all
of the elements of a jagged array on the same line.

 See Pascal.

foreach (int[] row in binomial)
{

foreach (int x in row)
 {
 Console.Write("{0} ", x);
 }
 Console.WriteLine();
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 84
 All Rights Reserved

Boxing and Unboxing

 One of the strong features of C# is that it has a
unified type system.

 Every type, including the simple built-in types, such
as int, derive from System.Object.

 In C#, everything is an object.

 A language such as Smalltalk also has such a feature,
but pays the price of inefficiency for simple types.

 Languages such as C++ and Java (before Java 5.0)
treat simple built-in types differently than objects,
thus obtaining efficiency, but at the loss of a unified
type system.

 C# enjoys the best of both worlds through a process
known as “boxing.”

 “Boxing” converts a value type, such as an int or a struct, to
an object and does so implicitly.

 “Unboxing” converts a boxed value type (stored on the heap)
back to an unboxed, simple value (stored on the stack).
Unboxing is done through a type cast.

int x = 5;
object o = x; // boxing
x = (int) o; // unboxing

 But there is a performance penalty from boxing and
unboxing.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 85
 All Rights Reserved

Implicitly Typed Variables

 The var keyword lets you declare and initialize a
variable without explicitly specifying a type.

 But the variable still has a type, inferred from the expression
on the right-hand side.

 var num = 55;
 // type is Int32

 var word = "Hello!";
 // type is String

 The C# var is not a “variant” data type, such as var in
JavaScript.

 The var keyword can also be used to declare and
initialize an array.

var primes = new[] { 2, 3, 5, 7, 11 };
// type is Int32[]

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 86
 All Rights Reserved

Implicitly Typed Variables – Example

 See ImplicitType.

static void Main(string[] args)
{
 var num = 55;
 ShowObject(num);
 ShowTypeInfo(num);

 var word = "Hello!";
 ShowObject(word);
 ShowTypeInfo(word);

 var primes = new[] { 2, 3, 5, 7, 11 };
 ShowArray(primes);
 ShowTypeInfo(primes);

 var words = new [] {"one", "two", "three"};
 ShowArray(words);
 ShowTypeInfo(words);
}

 Here is the output:

55
Type = Int32
Base class = System.ValueType
Hello!
Type = String
Base class = System.Object
2 3 5 7 11
Type = Int32[]
Base class = System.Array
one two three
Type = String[]
Base class = System.Array

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 87
 All Rights Reserved

Output in C#

 Simple output (e.g. for debugging) for various data
types can be done using Console.WriteLine() method
applied to a string.

 The ToString() method of System.Object will provide a
string representation for any data type.

 For custom data types, you should override ToString().

 You can use the + concatenation operator for strings to build
up an output string (a technique that can also be applied in
other contexts, such as building a SQL query string).

int x = 24;
int y = 26;
Console.WriteLine("Product of " + x + " and "
 + y + " is " + x*y);

 Alternatively, you can use {0}, {1}, etc. as
placeholders.

Console.WriteLine("Product of {0} and {1} is {2}",
 x, y, x*y);

Output:

Product of 24 and 26 is 624

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 88
 All Rights Reserved

Formatting

 C# has extensive formatting capabilities, which you
can control through the placeholders.

 Simplest: {n}, where n is 0, 1, 2, ...

 Control width: {n,w}, where w is width (positive for right-
justified and negative for left-justified)

 Format string: {n:S}, where S is a format string

 Width and format string: {n,w:S}

 A format string consists of a format character
followed (optionally) by a precision specifier.

Format Character Meaning

 C Currency (locale specific)

 D Decimal integer

 E Exponential (scientific)

 F Fixed-point

 G General (E or F)

 N Number with embedded commas

 X Hexadecimal

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 89
 All Rights Reserved

Formatting Example

double pi = Math.PI;
decimal cost = 70.45m;
Console.WriteLine("{0,30}", pi);

// width 30
Console.WriteLine("{0,-30}", pi);

// left justified
Console.WriteLine("{0,30:F}", pi);

// fixed point
Console.WriteLine("{0,30:F4}", pi);

// precision 4
Console.WriteLine("{0,30:C}", cost);

// currency

Output:

 3.1415926535897931
3.1415926535897931
 3.14
 3.1416
 $70.45

 See FormatDemo

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 90
 All Rights Reserved

Exceptions

 C# provides an exception mechanism similar in
concept to exceptions in C++ and Java.

 Exceptions are implemented by the Common
Language Runtime, so exceptions can be thrown in
one .NET language and caught in another.

 The exception mechanism involves the following
elements:

 Code that might encounter an exception should be enclosed
in a try block.

 Exceptions are caught in a catch block.

 An Exception object is passed as a parameter to catch. The
data type is either System.Exception or a derived type.

 You may have multiple catch blocks. A match is made
based on the data type of the Exception object.

 An optional finally clause contains code that will be executed
whether or not an exception is encountered.

 In the called program, an exception is raised through a throw
statement.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 91
 All Rights Reserved

Exception Example

 See ExceptionDemo\Step1.

using System;

public class ExceptionDemo
{
...
 public static int Main(string[] args)
 {
 int prod;
 long lprod;
 try
 {
 ...
 prod = CheckedMultiply(56666, 57777L);
 Console.WriteLine("product = {0}", prod);
 }
 catch (OverflowException e)
 {
 Console.WriteLine(

"Overflow Exception: {0}", e.Message);
 Console.WriteLine(

"Overflow Exception: {0}", e);
 }
 catch (Exception e)
 {
 Console.WriteLine(

"Exception: {0}", e.Message);
 Console.WriteLine("Exception: {0}", e);
 }
 Console.WriteLine("count = {0}", count);
 return 0;
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 92
 All Rights Reserved

Checked Integer Arithmetic

 By default in C#, integer overflow does not raise an
exception.

 Instead, the result is truncated.

 The checked operator will cause the integer calculation to
check for overflow and throw an exception if an overflow
condition arises.

 You can cause all integer arithmetic to be checked via the
/checked compiler command line switch.

 You can turn off checking by the unchecked operator.

 Unchecked arithmetic is faster, but less safe.

 The following method can throw two different kinds
of exceptions:

 private static int CheckedMultiply(
object a, object b)

 {
 int product = checked((int) a * (int) b);
 count++;
 return product;
 }

 The type casts can fail, resulting in InvalidCastException.

 The multiplication can overflow, resulting in
OverflowException.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 93
 All Rights Reserved

Throwing New Exceptions

 In general, it is wise to handle exceptions, at least at
some level, near their source.

 You have the most information available.

 See ExceptionDemo\Step2.

 A common pattern is to create a new exception object
that captures more detailed information and throw
this on to the calling program.

private static int CheckedMultiply(
object a, object b)

{
 int first, second;
 try
 {
 first = (int) a;
 }
 catch (InvalidCastException e)
 {
 count++;
 throw new Exception(
 "First operand is not an int", e);
 }
 try
 {
 second = (int) b;
 }

catch (InvalidCastException e)
 {
 count++;
 throw new Exception(
 "Second operand is not an int", e);
 }
...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 94
 All Rights Reserved

finally

...
 try
 {
 int product = checked(first * second);
 return product;
 }
 catch (OverflowException e)
 {
 throw new Exception(
 "Integer overflow", e);
 }
 finally
 {
 count++;
 }
}

 A finally block is always executed when control leaves
a try block.

 In the example above, the counter is always incremented,
whether or not an exception occurs.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 95
 All Rights Reserved

System.Exception

 The System.Exception class provides a number of
useful methods and properties for obtaining
information about an exception.

 Message returns a text string providing information
about the exception.

 This message is set when the exception object is constructed.

 If no message is specified, a generic message will be
provided indicating the type of the exception.

 The message property is read-only. (Hence, if you want to
specify your own message, you must construct a new
exception object, as done in the example above.)

 StackTrace returns a text string providing a stack
trace at the place where the exception arose.

 InnerException holds a reference to another
exception.

 When you throw a new exception, it is desirable not to lose
the information about the original exception.

 The original exception can be passed as a parameter when
constructing the new exception.

 The original exception object is then available through the
InnerException property of the new exception.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 96
 All Rights Reserved

Lab 2

Implementing a Customers Class

In this lab, you will begin the Acme Travel Agency case study by
implementing a simple Customers class in C#. You are provided
with starter code that defines a class for an individual customer and
a test program. You are to implement a class that can be used by
Acme to keep track of customers who register for its services.
Customers supply their first and last name, and email address. The
system assigns a customer id. The following features are
supported:

 Register a customer, returning a customer id
 Unregister a customer
 Obtain customer information, either for a single customer or

for all customers (pass the customer id, and for customer id
of –1 return all customers)

 Change customer’s email address

Detailed instructions are contained in the Lab 2 write-up at the end
of the chapter.

Suggested time: 60 minutes

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 97
 All Rights Reserved

Summary

 Every C# application has a class with a method Main,
which is the entry point into the application.

 The System class includes methods for doing input
and output, such as ReadLine() and WriteLine().

 The .NET Framework has a large class library that is
partitioned into namespaces.

 C# has control structures and operators similar to
those in C and C++.

 C# has value, reference, and pointer data types.

 Through boxing and unboxing, C# achieves a unified
type system, with all types acting as if they are
derived from object.

 Built-in numeric types, bool, and struct are value
types.

 Examples of reference types are object, string, and
arrays.

 C# has a flexible parameter passing mechanism that
can be controlled through ref and out keywords.

 C# has extensive formatting capabilities, which you
can control through the placeholders.

 Exceptions in C# are implemented by the Common
Language Runtime.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 98
 All Rights Reserved

Lab 2

Implementing a Customers Class

Introduction

 In this lab, you will begin the Acme Travel Agency case study by implementing a
simple Customers class in C#. You are provided with starter code that defines a class for
an individual customer and a test program. You are to implement a class that can be used
by Acme to keep track of customers who register for its services. Customers supply their
first and last name, and email address. The system assigns a customer id. The following
features are supported:

 Register a customer, returning a customer id
 Unregister a customer
 Obtain customer information, either for a single customer or for all customers

(pass the customer id, and for customer id of –1 return all customers)
 Change customer’s email address

Suggested Time: 60 minutes

Root Directory: OIC\CsEss

Directories: Labs\Lab2\Acme (Do your work here)
 CaseStudy\Acme\Step0 (Backup of starter files)
 CaseStudy\Acme\Step1 (Answer)

Files: Customer.cs
 Test.cs

Instructions

1. Build the starter program. There is a complete implementation of a Customer class

and a stub implementation of a Customers class. There is also a test program.
Examine the starter code and run the program. Notice that the test program handles
exceptions. For example, the stub GetCustomer function returns a null, which is
checked for in the test program. Also, if you enter non-numeric data when prompted
for an id in the test program, an exception will be thrown.

2. Add to the Customers class declarations of the following private members: an array
customers of type Customer[] and a variable nextc of type int. We will use nextc as
the index of the next element to be added to the array, and it should be initialized to 0.

3. Add code to the Customers() constructor that will instantiate the customers array to
have 10 elements and register some sample customers.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

CsEss Chapter 2

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 99
 All Rights Reserved

4. Add code in RegisterCustomer to instantiate a new Customer with the specified
fields, store this customer in the array, increment nextc, and return the id of this new
customer. (Note that an id is automatically generated by the constructor of
Customer.)

5. Replace the stub code in GetCustomer by code that will assign count to be nextc
and return customers. (Temporarily, we are trying to always return the entire array.)
Build and test. No customers are being shown as returned. Why?

6. The parameter count is passed by value, and so its new value is not passed to the
calling program. To fix this, we need to make it either a ref or an out parameter.
Since it only does output, we make it an out parameter. Build. We get compiler
errors. Why?

7. We also need to use the out modifier in the calling program Test.cs. Change this in
the two places where GetCustomer is called. Build and run. Now you should see
your sample data returned in response to the “customers” command. Also, the
“register” command should be working, so that you can register additional customers.

8. Now we want to provide the full functionality of GetCustomer. If id of –1 is passed,
the entire array is passed back. Otherwise, an array of 1 element is created, having
the customer information for the id that is provided. To implement this feature, first
provide code for the helper method FindId. This method does a linear search for the
given id. If not found, it returns –1. Otherwise it returns the index at which the id was
found.

9. Now finish the implementation of GetCustomer. Build and test. Now you should be
able to query for a single customer by id, as well as obtain the complete list of
customers.

10. Implement UnregisterCustomer. If the customer is not found, throw an exception.
Otherwise, delete the customer from the array. Move the elements after the deleted
element up in the array, to fill the deleted item. Build and test.

11. Finally, implement ChangeEmailAddress. Build and test. Your miniature customer
management system should now be completely working!

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

